当前位置:首页>>行业新闻>>技术前沿>>正文  
 

关键字:

用富有金属替代Si太阳能电池中的Ag电极

作者: 来源: SEMI 发表时间: 2013-04-16 已浏览 字号:

  作为Ag替代品的Al

  若能实现高高宽比,作为Ag 指形电极的替代品,Al比Cu更具吸引力。这方面有二个原因。一个是在Al和n型Si间呈现创纪录低的肖特基势垒0.08eV,这确保了低接触电阻。另一个是直至400℃,Al和Si间的界面反应可得到抑制。用价补Si(100)表面可获得这些结果。

  价补钝化

  “价补(valence mending)”的概念是Kaxiras提出的,旨在解除半导体表面的悬空键。对于Si(100)表面,价补是用硫或硒的单原子层实现的。在新生Si(100)表面,每一表面原子占据二个悬空键。这些悬空键是表面态的起源,它们钉扎表面费米能级。在金属/Si界面,费米能级钉扎效应使肖特基势垒高度与金属功函数没什么关系,主要受表面态(或更恰当地说是界面态)的控制。硫或硒的单原子层淀积在Si(100)表面时,它们在二个Si原子间桥接,很好地中止了Si(100)上的悬空键。然而,对于万亿瓦级光伏应用,硫比硒丰富得多。

  电学上,中止Si(100)表面上的悬空键使表面态最小化,这一直是巴丁时代以来半导体技术最为精彩的一页。使表面态最小的重要结果是莫特-肖特基(Mott-Schottky)理论将被更严格遵守,即金属与Si之间的肖特基势垒高度将主要由金属功函数与Si电子亲和势决定。在n型价补后的Si(100)表面上淀积低功函数金属就能实现低肖特基势垒。我们在有Al 的Se钝化n型Si(100)表面上展示了创纪录低的肖特基势垒。

  实验是在低剂量1015cm-3Sb掺杂n型Si(100)硅片上进行的。钝化后,在硅片上用电子束蒸发和剥离(lift-off)工艺制作直径200μm的Al圆点。重要的是,钝化后的溅射工艺要缓和,因为溅射淀积能破坏钝化层。确定Se钝化n型Si(100)上Al势垒高度的激活能测量,以及斜率给出的势垒高度取决于偏压,势垒高度在0.06-0.10eV间变化,远远低于Al/n型Si接触长期建立的值0.72eV。

  创纪录低的势垒高度应导致Al和n型Si间极低的接触电阻。轻掺杂与重掺杂Si的接触电阻分别由下面二式给出:

  任一情况中,接触电阻是势垒高度的指数函数。例如,Si中掺杂为1×1019cm-3时,势垒高度从0.6到0.4 eV适度地减少0.2eV就使接触电阻降低4个数量级!这就是降低n型Si上肖特基势垒能大大减少接触电阻的原因。低接触电阻对接触面积有限的指形电极是很重要的。它也能缓解由于Al电阻率较高而造成的指形电极电阻增加。更加重要的是,低接触电阻能在轻掺杂Si上实现,提供了硅片电池设计更多灵活性。

  在Si(100)表面中止悬空键的另一结果是抑制了表面的化学活性。这就是抑制Al与Si合金化的机理,也抑制了无意中Si 的p型掺杂。

  实验是通过检验在Se钝化Si(100)表面上Ni硅化进行的。在二片Si(100)硅片上淀积50nm Ni膜,一片有Se钝化,另一片没有Se钝化。在N2中400-700℃间加热这些样品60秒进行硅化,用透射电子显微镜检查Ni/Si界面。对于没有Se且在400℃下退火的控制样品,观察到硅化,结果在Ni和Si间有二层硅化物堆叠。这证实了Foll等人早先对于Ni硅化的TEM研究。他们的结论是,二层堆叠分别为Ni2Si和NiSi。500℃退火后,单层NiSi出现在控制样品的Ni/Si界面。但是,钝化样品的表现完全不同。400℃退火后,Ni与Se钝化Si(100)表面间没有硅化而且界面陡削。500℃退火后,Ni与Se钝化Si(100)表面间仍然没有明显的反应。仅仅在600℃退火后,Ni与Se钝化Si(100)反应形成单层NiSi。因此,Ni/Se钝化Si(100)界面的热稳定性是~400℃。

  上述结果说明,直到400℃均能防止Al与Si合金化,或直到400℃能抑制n型Si的无意p型掺杂。由于目前Al浆一般在750℃烧结,需要开发新的低温Al浆,用于以低于400℃烧结温度的n侧接触。若p侧Al浆仍然在750℃烧结,对于这样的全Al硅片太阳能电池就必须采用二步烧结工艺:第一次烧结在750℃用于p侧接触,第二次烧结在400℃用于n侧接触。二步烧结工艺似乎比目前的一步烧结工艺成本较高,不过,这或许是我们为了在硅片太阳能电池中避免用Ag不得不付出的代价。

|<< << < 1 2 3 > >> >>|
关闭窗口

上一篇:重庆成功突破多晶硅生产关键技术 达国内领先水平
下一篇:得可太阳能助力为低成本、高效率太阳能电池扫除障碍