当前位置:首页>>行业新闻>>技术前沿>>正文  
 

关键字:

钝化接触太阳能电池

作者: 李阳 来源: pv-tech 发表时间: 2015-07-06 已浏览 字号:

  下面,我们用选择性接触的理论解释一下松下异质结(HIT)电池的原理。HIT电池吸收层采用n型单晶硅片,正面首先沉积很薄的本征非晶硅层,作为表面钝化层,然后沉积硼掺杂的p+型非晶硅层,二者共同构成正面空穴传输层。沉积后,硅片靠近表面由于能带弯曲,阻挡了电子向正面的移动,电子只能向后表面移动。相反的对空穴来说,虽然本征层对空穴有一个小的阻挡 ,但由于本征层很薄,空穴可以隧穿然后通过高掺杂的p+型非晶硅。在背面同样沉积本征非晶硅薄层和掺磷的n+非晶硅层,同样由于能带弯曲,空穴无法轻易传过背面,而电子可以传过,所以二者构成了电子传输层。通过在电池正反两面沉积选择性传输层,使得光生载流子只能在吸收材料中产生富集然后从电池的一个表面流出,从而实现二者的分离。

  松下异质结HIT电池是一种典型的选择性接触结构。另一种典型的选择性接触电池为Silevo公司的Triex隧道异质结电池,与HIT电池结构相似但钝化层采用氧化硅而非本征非晶硅。而与这两种完全意义上的选择性电池不同,上文中提到的背面钝化接触电池其实是一种只在背面实现了选择性接触的电池。背面钝化接触技术究竟性能如何,有没有双面采用钝化接触技术实现选择性接触电池的设计呢?下面让我们看一下这个领域的最新进展。

  钝化接触技术的研究进展

  近年来,先后有多家研究机构对钝化接触太阳能电池展开研究。虽然松下已经展示了采用非晶硅薄膜作为钝化层的HIT电池,最新破纪录的效率达到25.6%,不过非晶硅薄膜由于其对表面准备要求较高,无法承受较高温度后续工艺,人们开始将视野投向其他有钝化效果的薄膜材料。几家研究机构目前的研究热点集中在氧化硅薄层和高掺杂硅薄层的叠层结构。

  德国弗劳恩霍夫太阳能研究所(Fraunhofer ISE)

  Fraunhofer ISE已在钝化接触电池方向耕耘多年。在2013年推出了自己的隧穿氧化层钝化接触(TOPCon)技术。使用一层超薄的氧化层与掺杂的薄膜硅钝化电池的背面。其中背面氧化层厚度1.4nm,采用湿法化学生长。随后在氧化层之上,沉积20nm掺磷的非晶硅,之后经过退火重结晶并加强钝化效果。经过上述步骤,双面钝化的200μm厚度的nFZ硅片的隐开路电压(iVoc)可以达到710mV以上,即使后续工艺温度超过400iVoc仍可保持在700mV以上。其中氧化硅减少了表面态保持了较低的隧穿电阻,掺杂多晶硅提供了场致钝化并对载流子选择性透过。需要指出的是,早期MIS电池的研究中,研究人员就已经发现当氧化层厚度超过2nm后,其隧穿效应就开始显著下降,影响填充因子。

  具体到电池工艺方面,Fraunhofer ISE采用nFZ硅片,正面采用普通金字塔制绒,硼扩散,ALD氧化铝加PECVD氮化硅钝叠层起到钝化和减反射效果。背面采用上述TOPCon技术,正反金属化采用蒸镀Ti/Pd/Ag叠层实现,电池开路电压达到690.4mV,填充因子也达到81.9%。为了进一步提高效率,其进一步优化正面电极设计,降低金属接触面积,背面换用单层1μm的银提高背面内部反射,开路电压达到700mV,填充因子82%,效率达到23.7%。而在今年三月份的Silicon PV会议上,其公布的采用TOPCon技术的最新效率为24.9%。而相比PERL结构电池,TOPCon技术无需背面的开孔及对准。

  在上述设计中,Fraunhofer ISE只是将TOPCon技术用于正面。2014年,该研究机构公布了正反两面钝化接触的设计,实现了我们上文介绍的选择性接触电池结构。采用pFZ硅片,250μm厚度,无需扩散,正反两面直接化学生长1.4nm氧化层,分别沉积15nm掺磷和掺硼的非晶硅,之后退火。正面采用溅镀ITO,蒸镀Ti/Pd/Ag叠层栅线,背面蒸银作为背面电极。该电池设计开路电压达到692.4mV,填充因子达到79.4%。由于退火温度的不同,这里沉积的非晶硅并未结晶为多晶硅,而是达到了类似薄膜硅电池中的微晶硅形态。但由于正面并未制绒,以及类似HIT电池中的正面ITO和微晶硅层的吸收,其短路电流只有31.6mA/cm2,效率17.3%。不过研究人员还特别对比了正面多晶硅和微晶硅的吸收,同厚度的微晶硅的吸收比非晶硅小最多两倍。因此研究人员认为通过后续优化,这一结构有望成为可以与HIT竞争的另一种选择性接触电池的设计。

|<< << < 1 2 3 4 > >> >>|
关闭窗口

上一篇:硅薄膜太阳能电池转化率达13.6% 破世界纪录
下一篇:电池新技术:旋转太阳能电池 产生20倍以上电力